Climate change threaten endemic plants in the Eastern Afromontane Rainforest of Ethiopia: the case of *Vepris dainellii* (Pic.Serm.) Kokwaro **By Fikadu Erenso**

NileWell Scientist-Journalist Coproduction Fellowship 2024

Introduction

- Ethiopia has a wide variation in altitude ranging from
 125 m below sea level to the highest peak over 4533
 m above sea level (Asefa et al., 2020)
- The country falls within **two** biodiversity hotspots,
 - 1. the Eastern Afromontane and,
 - 2. the Horn of Africa (Fashing et al., 2022)

home to numerous endemic plant species

- \square ~6,500 species of plants (600 endemic) (Demissew et al., 2021a),
- Among these *Vepris dainellii* belonging to the
 Rutaceae family, is endemic to Ethiopia
- It flourishes in restricted habitats.

Vepris dainellii (Pic.Serm.) Kokwaro

- ❖ It grow particularly within the lowland altitudes ranging from 1050 to 2500 meters (Bekele, 2007).
- ❖ It is locally useful: the fruit are collected (ripe fruit is sold, used as an additive to coffee), and
- The wood is used for firewood, timber, farm tools (Denu & Desissa, 2013).
- ♣ It has medicinal uses in treating certain bacterial infections, stomach ach and malaria (Robi, 2016).
- There is evidence of overharvesting of mature fruits, which reduces regeneration,

Impacts of Climate Change on *Vepris dainellii*

- ❖ A recent systematic review finds that endemic plant species in Ethiopia are under threat from
- ☐ climate change-induced land conversion, as well as from
- grazing, fuelwood/timber production, and cropland expansion (Abro et al., 2024).
- Climatic change is expected to shift habitat suitability, if the current suitable range moves upward or to cooler, wetter microhabitats, *V. dainellii* populations at lower elevations (around 1,050 m) may lose habitat.
- As climate change leads to changes in seasonal rainfall (less precipitation in dry periods, more variability, possibly longer dry seasons), *V. dainellii*, being in montane forests, may suffer moisture stress.
- Increased heat stress on adult trees, changes in growth rates.

- To better understand the exact impact of climate change on *Vepris dainellii*:
- This study aims to project its future distribution under varying climate scenarios and a comprehensive model that highlights potential suitable habitats

Data collection

1. Species Occurrence record for V. dainellii

- From field survey =6,
- National Herbarium of Ethiopia (ETH), Addis Ababa University =14 and,
- The Global Biodiversity Information Facility (GBIF; <u>www.gbif.org/</u>) =34 <u>records</u>, = 54 occurrence sites

2. Environmental variables

The bioclimatic variables, from WorldClim (https://www.worldclim.org/data/cmip6/cmip6_clim30s.html)
For the projected climate scenarios, (HadGEM3-GC31-LL) for the periods, 2041-2060 and 2061-2080

Environmental Variables Selection

- The Variance Inflation Factor (VIF) was calculated for each bioclimatic variable to identify any high correlations among them and to enhance model stability and prediction accuracy in R version 4.2.2.
- Systematically all variables were eliminated with VIF values exceeding a predetermined threshold.
- These nine bioclimatic variables were retained for the species distribution models of *Vepris dainellii*.
- **Bio3**: Isothermality (Bio2/Bio7) (×100)
- **Bio4**: Temperature Seasonality (standard deviation ×100)
- **Bio7**: Temperature Annual Range
- **Bio9**: Mean Temperature of Driest Quarter
- **Bio13**: Precipitation of Wettest Month
- **Bio14**: Precipitation of Driest Month
- **Bio15**: Precipitation Seasonality (Coefficient of Variation)
- **Bio18**: Precipitation of Warmest Quarter
- **Bio19**: Precipitation of Coldest Quarter

Model Evaluation and Validation

four modelling techniques examined: Maximum Entropy (MaxEnt), Generalized Linear Models (GLMs), Random Forest (RF), and Boosted Regression Trees (BRT)

Table 1: Model of SDMS mean performance (per species) using test dataset (generated using partitioning)

Methods	:	AUC	I	COR	I	TSS	I	Deviance	
GLM	:	0.91		0.68		0.81		0.17	
BRT	:	0.94		0.76	I	0.84	I	0.16	
RF	:	0.94		0.81	I	0.87		0.12	
MaxEnt	:	0.95		0.72		0.86		0.17	

Variable importance charts

The distribution of *V. dainellii* was shown to be most affected by:

- Precipitation of Warmest Quarter (bio18),
- Temperature Seasonality (sd ×100) (bio4),
- Precipitation of Driest Month (bio14), and,
- Precipitation Seasonality (bio3)

Figure 1: Relative Variable importance of *V. dainellii* distribution

Habitat Suitability Classification Current(1970-2000) 15 12 Suitability Class Unsuitable Less Suitable Moderately Suitable Suitable Highly Suitable

Figure 2: Predicted habitat suitability classification of *Vepris dainellii* under current (1970–2000) climate scenario

Habitat Suitability Classification SSP245(2060) SSP245(2080) 15 12 Suitability Class Unsuitable Less Suitable > SSP585(2060) SSP585(2080) Moderately Suitable 15 Suitable Highly Suitable 12

36

48

36

40

Figure 3: Predicted habitat suitability classification of *V. dainellii* under projected future climate change scenarios (SSP245(2050), SSP245(2070), SSP585(2050), and SSP585(2070))

44

48

40

Figure 4: The proportion of habitat suitability area changes predicted for *V. dainellii* under different climate change scenarios.

The way forward

- ✓ Sustainable Management Strategies
- ✓ Community Engagement
- ✓ Collaborative Approaches
- ✔ Focused Research and Monitoring

Thank you!!